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Background
Soil carbon sequestration (SCS) has significant potential to 
attenuate the increase of atmospheric CO2
• Global: 0.4 – 0.8 Pg C y-1; 50 – 100 y (IPCC 1996)
• USA: 0.08 – 0.21 Pg C y-1; 30 y (Lal et al. 1999)

Near-term SCS potential in croplands
• Global: 0.12 Pg C y-1 by 2010; 0.26 Pg C y-1 by 2040 (Sampson et 

al. 2000)
Current estimates of SCS
• USA: 0.021 Pg C y-1 during 1982 – 1997 (Eve et al. 2001)

The deployment of SCS practices will require robust 
methods for monitoring soil carbon changes
Simulation models with ability to simulate soil carbon and 
nitrogen dynamics can play major role in monitoring SCS 
at field, landscape and regional scales



Detecting and scaling
changes in soil carbon

Detecting soil C changes
• Difficult on short time scales
• Amount changing small 

compared to total C
Methods for detecting and 
projecting soil C changes (Post 
et al. 2001)
• Direct methods

– Field and laboratory 
measurements

– Eddy covariance
• Indirect methods

– Accounting
- Stratified accounting

– Remote sensing
– Models
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Objectives

Review components and drivers of the carbon balance in 
agroecosystems
Discuss modeling approaches in Century and EPIC
Present examples of applications of these models at 
various scales of spatial resolution
• Field
• Landscape
• Region
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Environmental Variables and Management Determine
Carbon Flux Between Soils and the Atmosphere

CO2

Soil C

Cropping Rotation 
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Cropping Intensification
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Residue Management Fertilizer Management

Land-Use Change

Soil Characteristics

Topography

Climate

Irrigation Management



Two terrestrial 
ecosystem models

Century
• Century
• DayCent
• C-STORE

EPIC
• EPIC
• APEX
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The C-Store® Soil 
Carbon Model
The C-Store® Soil 
Carbon Model

Crop Yields

Tillage

Crop Growth Timing 
and Distribution

Weather

Land Use History

Soil Physical Properties

Residue and Manure Mgmt

C-Store® Soil C

C-STORE: 
Predicting soil C changes at 

the field level



Select State and County
Describe Land 
Use History

Specify Soil Type



Specify
Tillage
System

Past
Management System

(1900-2000)

Specify
Yields

A similar screen is used for
2001-2020

Run the Model



Graphic output

Detailed 
tabular output



Measured vs. Modeled Soil Carbon Stocks
Measured Initial C Values
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C-Store® Development Status

Copyright 2003
The Natural Resource Ecology Laboratory

Colorado State University

Initial 
Model 

Development

Initial
Testing

Build
Validation & 
Verification

Dataset
Integrate with

Economic Models

Web Interface
Development, 
Beta Testing

Final 
Testing

Release
Fall, 2004

Verification and
Uncertainty

Process



APEX, a watershed model to simulate 
plant growth, hydrology, soil erosion and 
nutrient cycling on multiple fields Routing runoff & sediments 

(soil, nutrients, pesticides)

Belowground flow

Carbon and nutrient cycling
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Digital Elevation Model 
help delineate drainage area

Remote Sensing 
imagery helps 

determine crop types 
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Seven fields on a hillslope in 
Frederick Co., MD
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Deposition of sediment (tons/ha) 
 1.26  
 -----  
 0.94  

4.91 ----- 0.15 
 -----  
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Soluble Nutrients
 in Q 

Nutrient loss
 in sediment Soil C Change Subarea Runoff (Q)  Sediment in Q 

P  N P  N  Top 0.25m  Profile 
 mm t/ha ------------------------------kg/ha---------------------------- --------------t/ha-------------- 
1 164 2.1 1.4 6.2 1.5 10.5 -1.8 7.5 
2 61 5.5 1.1 1.5 5.3 12.3 -6.3 1.1 
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Landscape modeling is 
helping our understanding of 

the role of erosion in the 
carbon cycle



The EPIC model: validation and application to estimate soil carbon 
sequestration under no till at the national scale

Long term experiments
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Overview of the 
data assembly 
and modeling 
system in EPIC

National Resource 
Inventory

Cropping Practice Survey

Populated Model Run Databases--"The Library of Runs"

RunBuilder

Census of Agriculture
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Climate

Irrigation 
Schedules

Manure 
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Data Reduction 
Processes

I_Epic Interface

Model Run Input Databases

Analytical Framework-
National Datasets



Notill C Benefit for Dryland Corn by Soil Cluster for Selected States
(Soils in each state sorted in descending order of NT benefit) 
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Soil Carbon Over Time for Soybeans on 2 Iowa Soils by Tillage Type
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The Century model: validation and application at 
the national scale

Background image shows all MLRA’s that have more than 5% agricultural cropland

Climatic Data
Monthly Temperature
Monthly Precipitation

Historical Cropping Practices

Recent Cropping Practices
Crop Rotation
Tillage
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Irrigation

Native Vegetation

Soil Characteristics
Texture
Drainage

INPUT DATA
MODELED 
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Tillage Changes
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Land Use Changes
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Converted to grassland

Rotation Changes

MLRA 108



Kansas wheat-fallow test 
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Manhattan, KS site data used in simulation.  Average monthly weather data used for 1866-1894. 
Measured monthly precipitaion used for 1895 onward, along with mean monthly tmax, tmin.

N = gN/m2

75% straw removal------->50% straw removal----------------------->grain only removed------------------->



Net Carbon Gains - 1997 rates
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Century

IPCC

18.4 MMTC yr-1

on 168 Mha cropland

21.2 MMTC yr-1

on 149 Mha cropland



Summary
Simulation modeling plays a fundamental role in 
predicting and understanding soil carbon 
sequestration at different scales of resolution
C-STORE promises to be a useful tool to develop 
field-estimates of soil carbon sequestration
Landscape modeling with APEX should help 
understand the role of erosion in the carbon cycle
The use of Century and EPIC at the regional and 
national scales will provide independent estimates 
of soil carbon sequestration
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